FREE ELECTRONIC LIBRARY - Abstract, dissertation, book

Pages:   || 2 |

«Aquatic Plant Management Barley Straw for Algae Control Carole A. Lembi, Professor of Botany Botany and Plant Pathology, Purdue University E-mail: ...»

-- [ Page 1 ] --


Aquatic Plant Management

Barley Straw for Algae Control

Carole A. Lembi, Professor of Botany

Botany and Plant Pathology, Purdue University

E-mail: lembi@purdue.edu

The use of barley straw for algae control has received a lot

of publicity in recent years. It is now common to find small

barley bales being sold in nurseries and garden shops for use in

water gardens and small pools to control algae. The word-ofmouth reports of success with this method have led many people

to suspect that barley might also control algae in ponds and lakes. What has research so far told us about the potential for barley to control algae in these larger bodies of water? And, what does the Environmental Protection Agency (EPA) say about using barley straw as an algicide? These topics will be addressed in this publication.

Where It All Started The technique of using barley for algae control was developed in the early 1990s in England, where it is widely used in many bodies of water, including large reservoirs and canals. In Where It All Started • general, it is thought that fungi decompose the barley in water, which causes a chemical to be released that prevents the growth of Research in the U.S.

• the algae. The specific chemical(s) has not been identified (oxidized polyphenolics and hydrogen peroxide are two decomposition EPA’s Views on Barley • products that have been suggested), and it is not clear whether the chemical is exuded from the barley itself or if it is a metabolic If You Do Choose to product produced by the fungi. The activity of barley straw is • usually described as being algistatic (prevents new growth of algae) Use Barley, How rather than algicidal (kills already existing algae).

Should You Do It?

Laboratory studies conducted by English researchers

–  –  –

Research in the U.S.

American researchers have been somewhat slow to initiate research on barley. However, some studies have been conducted and will be summarized here.

Results of research at Purdue University have been inconsistent. Our first studies were conducted in the laboratory, and we were able to show that some algal species were indeed susceptible to barley, but others were not. A similar study at the University of Maryland (1) also showed that algal species vary in their susceptibility. We then tried larger studies that were conducted in stock tanks (outdoors) and in plastic cylinders (in the greenhouse). Although a decrease in phytoplanktonic growth (the microscopic algae that color the water green) was sometimes observed, we often noticed an increase in mat-forming algae (the algae that form floating mats on the surface of the water).

A field study was initiated by researchers (2) at the University of Nebraska. In April 2000 they applied barley to a lake that had a history of noxious phytoplankton blooms (blue-green algae). They monitored the lake through September and found no improvement in water quality. In April 2001, they removed the netting and remaining straw and continued to monitor the lake in 2001 and 2002.

Water quality remains poor and the lake is still dominated by blue-green algae. No further research is planned with barley at this time.

Plastic enclosures were established in a pond at Iowa State University in the summer of 2001 (3) to compare barley-treated and untreated mat-forming algae. The mat-forming algae were not reduced in the barley-treated enclosures although the experiment had to be prematurely terminated at mid-summer because drought conditions dried up the enclosures.

Additional studies were conducted several years ago at the University of Florida (4) and at North Carolina State University (5). In Florida, a small scale study found that predigestion of the straw (incubation in water) for about a month was necessary for activity. As shown in the English studies, the effect was algistatic rather than algicidal. In other words, the liquor did not reduce existing algal populations but did prevent algae from growing. The conclusion from this study was that the amount of straw needed, if extended to a pond scale, was too large to be practical in Florida, particularly since its ponds and lakes are warm, shallow, and have such a long growing season.

Several pond trials conducted there were unsuccessful. In North Carolina, two trials were conducted on farm ponds with no effect on mat-forming algae.

Testimonials from pond or lake owners who have tried barley straw range from success to failure. Without replication (e.g. treating several ponds and not treating others with similar algae and water conditions) and extensive data collection, it is difficult to evaluate these reports. The best user documentation thus far has been obtained by Steve McComas of Blue Water Science (6) who has collected data before and after barley treatment on two lakes in Minnesota. In Valley Lake (Lakeville, MN), 1999 readings for Secchi disk transparency, chlorophyll (a measure of microscopic algae growth), and total phosphorus were 3 ft, 36 ppb, and 71 ppb, respectively. In 2000 and 2001, barley straw was added to the lake at rates of 200 and 240 pounds per acre, respectively. In 2001, Secchi disk transparency had increased to 6 ft, and chlorophyll and phosphorus values had decreased to 7 ppb and 37 ppb, respectively. These data suggest that rather than directly controlling algae, the barley straw may reduce phosphorus concentrations which in turn reduce phytoplankton growth. In either case, it is difficult to rule out normal year to year variation as a cause. Although no data were taken on mat-forming algae, observations suggest that its growth was reduced (but not eliminated).

APM-1-W Aquatic Plant Management Barley Straw for Algae Control In summary, results from university research in this country have not been consistent or very positive. Whether we are dealing with algal species, water conditions, climatic conditions, or other factors that differ from those of the typical English water body is simply not known at this time. In some cases, the research has been limited in terms of monitoring and may not have followed the guidelines suggested by English scientists. More research in replicated ponds with ample aeration to ensure that the barley decomposes is certainly warranted, but facilities and funding for this kind of research are difficult to obtain.

Clearly, the use of barley is not a process that is going to produce rapid, visible results like an algicide application would. Algae that have been treated with copper sulfate, for example, can start to turn white within a couple of hours after treatment. Results with barley, according to the English researchers, can take several months. Perhaps we Americans are just too impatient!

EPA's Views on Barley The Environmental Protection Agency (EPA) has the responsibility of maintaining the health of our nation's bodies of water. It is also the agency that regulates the use of pesticides in the United States. All pesticides must undergo thorough testing for their potential to cause adverse effects on non-target species, human health, and the environment. A pesticide that is approved by EPA for use receives a registration number. Only registered products can legally be used as pesticides.

After the apparently successful Lakeville, Minnesota test, a number of lake associations in that state were anxious to begin using barley straw as an alternative to traditional pesticides. Members of the Minnesota Department of Natural Resources were concerned that not enough was known about the potential effects of barley. They questioned whether it provides consistent control and whether they could approve its use in “public” waters (7). The Minnesota Department of Agriculture asked EPA for guidance on this matter.

EPA’s response is summarized as follows: The EPA defines a pesticide as “any substance or mixture of substances intended for preventing, destroying, repelling, or mitigating any pest.” If a claim is made that barley “controls” algae (a pest), it is legally considered to be a pesticide. However, no company has ever registered barley for use as a pesticide. It has not gone through the testing required for registration. Therefore, barley cannot be sold as a pesticide to control algae. This ruling has serious implications for certified commercial applicators (individuals who have been state certified to apply aquatic pesticides for hire) and lake management specialists. These individuals cannot recommend or apply barley for algae control; this application would be the same as distributing an unregistered pesticide.

Likewise, garden shops and nurseries cannot legally sell barley straw for the stated or implied purpose of algae control. Registration is required for all pesticides before they are sold or distributed, regardless of whether most applications go into larger bodies of water or into water gardens, even though the latter usually are privately owned, very small, and not likely to have an impact on the natural environment.

A homeowner with a “private” pond or lake is in a different situation. For the homeowner who does work on their own pond, barley qualifies as a “home remedy” and does not come under EPA authority. Pond owners who wish to purchase barley and apply it to ponds on their own property themselves are perfectly free to do so. However, a person who lives on a public lake cannot apply barley because public waters are "owned" by the public and managed by state government and therefore would fall under EPA restrictions. EPA does not provide guidance on which ponds/lakes are “private” vs. “public,” and how this distinction is made likely varies among states.

APM-1-W Aquatic Plant Management Barley Straw for Algae Control There is also a matter of semantics. EPA acknowledges that some products have multiple uses and that it is legal to advertise, sell, and apply a product based on its non-pesticidal uses, even if the product also has pesticidal uses. In this case, as long as someone does not claim algae control per se, they could sell or apply barley straw. The obvious alternative reason for the application of barley is that it might act as a water clarifier. Although there is little evidence that barley acts like typical clarifiers such as alum (which causes the precipitation of phosphorus or removes particles from the water), this is one way in which the direct claim or implication of “algae control” can be avoided. Is this a legitimate way to justify the use of barley? Until further clarification is obtained from EPA, this is a matter for the individual to decide.

For a copy of EPA's written response to questions about barley, please contact me by e-mail (lembi@purdue.edu) and send your FAX number.

If You Do Choose to Use Barley, How Should You Do It?

General Considerations Recommendations for the use of barley straw to control algae have been distributed through several media, mostly derived from the English experience. If, given the preceding information, you decide to use barley as a home remedy, you should consult your state Department of Agriculture to determine the legal status of using barley straw for algae control in your state.

Some of the most important considerations are as follows:

(1) Do not just toss barley bales or handfuls of barley into the water. The bales must be broken apart and the barley loosely placed into netting so that water and air can circulate through the straw. The decomposition process is aerobic; in other words, it requires oxygen. Tight bales prevent the thorough distribution of oxygen. Anything that increases aeration in the body of water, like an aerator, may help in the decomposition process.

(2) A commonly recommended dosage is 225 pounds of barley per acre of water (about 5 bales). The water should be relatively shallow, perhaps 4 to 5 feet in depth. Barley may work in deeper waters as well, but maximum depths have not determined.

(3) Do not expect immediate effects. If barley works as an algistat rather than as an algicide, it will prevent new growth, but it may not kill off what is already present. Presumably, early treatments, perhaps in March or April, applied before the algae start to grow, will help this situation. The other alternative is to control existing algal populations, either manually or chemically, and then to apply the barley to prevent new growth. According to Dr. J.

Newman, who has conducted some of the research in England, the activity of barley builds up to a maximum at about 6 months after treatment and then ceases. At that time, new barley should be introduced into the system.

Printed below are specific use instructions published by the University of Nebraska that are based on English recommendations.

–  –  –

Guidelines from the University of Nebraska These guidelines are modified from those supplied by the Lake Water Quality Extension Program, University of Nebraska, at http://www.ianr.unl.edu/PUBS/wildlife/NF429.htm. Much of the information was obtained from English recommendations (Centre for Aquatic Plant Management), and more detail can be obtained from the CAPM at http://www.exit109.com/~gosta/pondstrw.sht.

When to Apply the Straw

The decomposition process is temperature dependent and occurs faster in warmer water.

When the water temperature is below 50oF, it takes approximately 6-8 weeks for the decomposing straw to produce enough of the growth inhibiting chemical to effectively control algae. However, it only takes 1-2 weeks when the water temperature is above 68oF. Once the straw begins to produce sufficient amounts of the chemical, it is likely to control algae for about 4-6 months. Therefore, straw should be applied in mid-to-late April in order to control summer algal growth in ponds and lakes in Nebraska (or sites at similar latitudes).

Amount of Straw to Apply

The amount of straw required to control algal growth is primarily dependent on the surface area of the lake. Lakes with a history of algae problems should be treated at a rate of 225 pounds of barley straw per surface acre. This rate is equivalent to about 0.8 ounces of straw per 10 square feet of surface area. Lower doses can be tried, but should not fall below 90 pounds of straw per acre or 0.3 ounces per 10 square feet.

Pages:   || 2 |

Similar works:

«DISSERTATION Titel der Dissertation „A PRIVACY CONSERVING APPROACH FOR THE DEVELOPMENT OF SIP SECURITY SERVICES TO PREVENT CERTAIN TYPES OF MITM AND TOLL FRAUD ATTACKS IN VOIP SYSTEMS” verfasst von Dipl.-Ing.(FH) Stefan Hofbauer, MSc angestrebter akademischer Grad Doktor der technischen Wissenschaften (Dr. techn.) Wien, 2014 Studienkennzahl lt. Studienblatt: A 786 881 Dissertationsgebiet lt. Studienblatt: Dr.-Studium der technischen Wissenschaften Informatik Betreuer: Univ.-Prof. Dipl.-Ing....»

«Sex and the Situs Sam Cooper I want to talk about not talking about sex; or, more precisely, I want to talk about why someone who professes total social liberation should choose to not talk about sex. The Situationist International (SI) famously held that all social interaction is mediated by the spectacle, which is the culmination and controlling mechanism of consumer capitalism. Guy Debord argued that within the society of the spectacle “everything that was directly lived has receded into a...»

«THE EFFECT OF POST TYPE AND LENGTH ON THE FRACTURE RESISTANCE OF ENDODONTICALLY TREATED TEETH By John Duncan McLaren, D.D.S. A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science in Restorative Dentistry The University of Michigan School of Dentistry Ann Arbor, MI Thesis Committee: Dr. Peter Yaman, D.D.S., M.S.; Chairman Dr. Joseph Dennison, D.D.S., M.S. Dr. Neville McDonald, D.D.S., M.S. Dr. Warren Wagner, M.S., Ph.D. DEDICATION This thesis is...»

«  Action Guide for Emergency Management At Institutions of Higher Education U.S. Department of Education Office of Safe and Drug-Free Schools This report was produced under U.S. Department of Education Contract No. ED-04-CO-0091 with EMT Associates, Inc. and ICF Macro. Tara Hill served as the contracting officer’s technical representative and project manager. U.S. Department of Education Arne Duncan Secretary Office of Safe and Drug-Free Schools Kevin Jennings Assistant Deputy Secretary...»


«Южакова Е., канд. филол. наук, доцент, Одес. нац. академия пищевых технологий, Одесса ПРОБЛЕМЫ ПЕРЕВОДА ТЕХНИЧЕСКОЙ ТЕРМИНОЛОГИЧЕСКОЙ ЛЕКСИКИ НА СОВРЕМЕННОМ ЭТАПЕ В статье рассмотрены дискуссионные вопросы перевода определённых групп технических терминов с русского...»

«INTERNAL REVENUE SERVICE NATIONAL OFFICE TECHNICAL ADVICE MEMORANDUM December 02, 2004 Third Party Communication: None Date of Communication: Not Applicable Number: 200508015 Release Date: 02/25/2005 Index (UIL) No.: 168.20-02 CASE-MIS No.: TAM-129412-04/CC:PSI:B06 -Taxpayer's Name: Taxpayer's Address: -Taxpayer's Identification No -Years Involved: Date of Conference: LEGEND: Taxpayer: ISSUES: 1. Whether the tangible personal property, land improvements, and non-residential real property used...»

«Title: TOWARDS A COMPREHENSIVE STRATEGY FOR THE EFFECTIVE AND EFFICIENT MANAGEMENT OF INDUSTRIAL POLLUTION ALONG THE ATLANTIC COAST OF CAMEROON Dissertation submitted to the Faculty of Environmental Sciences and Process Engineering of the Brandenburg University of Technology Cottbus, in Partial fulfillment of the requirement for the award of a Ph.D Degree (according to the ERM Ph.D regulations) BY Dieudonne Alemagi (M.Sc) Born in Ebolowa, South Province, Cameroon Matr. Nos. : 2119268...»

«Remote Sensing Techniques for mangrove mapping Chaichoke Vaiphasa THESIS Abstract Mangroves, important components of the world’s coastal ecosystems, are threatened by the expansion of human settlements, the boom in commercial aquaculture, the impact of tidal waves and storm surges, etc. Such threats are leading to the increasing demand for detailed mangrove maps for the purpose of measuring the extent of the decline of mangrove ecosystems. Detailed mangrove maps at the community or species...»

«Jahresbericht Bilanz und Erfolgskonten 2012 Budget 2013 Inhaltsverzeichnis I. Bericht des Präsidenten I.1 Tätigkeiten Vitivals im Jahr 2012 I.2 ÖLNund Zertifikats Kontrollen I.3 Vitiswiss und Label Vinatura I. 4 Aktivitäten 2013 I. 5 Schlussfolgerung II. Bericht der technischen Kommission II.1. Rebjahr 2012 II.2. Aktivitätenprogramm II.3. Pflanzenschutz und technische Anwendung II.4. Anforderungen ÖLN und Zertifikat III. Bilanz und Erfolgsrechnung 2012 III.1. Erfolgsrechnung 2012 III.2....»

«a320 sitzplan a320 sitzplan Airbus A321-200 Sitzplan Sitzpläne, Saalpläne Sitzplan/Sitzplätze und weitere Informationen zum Airbus A321-200. Der Airbus A321 gehört zur A320-Familie des Flugzeugherstellers Airbus. Unsere Airbus Flotte für Lang und Kurzstreckenflüge Finden Sie technische Daten und Sitzpläne zu den Flugzeugtypen A340-300, A330-300, A321-111, A320-214, A319-112 aus der Airbus-Familie. Airbus A320 family Wikipedia, the free The Airbus A320 family consists of shortto...»

«Married Adolescents: An Overview Nicole Haberland, Erica Chong, Hillary Bracken Paper prepared for the WHO/UNFPA/Population Council Technical Consultation on Married Adolescents WHO, Geneva 9–12 December 2003 CONTENTS Acknowledgments Introduction: In No One’s Sphere Early Marriage Remains Extensive Marital Patterns Are Diverse Early Marriage Is an Abuse of Rights Social and Economic Dimensions of Married Adolescent Girls’ Lives The Transition to Marriage: A Confluence of Profound Changes...»

<<  HOME   |    CONTACTS
2016 www.abstract.xlibx.info - Free e-library - Abstract, dissertation, book

Materials of this site are available for review, all rights belong to their respective owners.
If you do not agree with the fact that your material is placed on this site, please, email us, we will within 1-2 business days delete him.